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INTRODUCTION 

Preamble 

The genetic obesity of the Zucker rat results from an autosomal 

recessive mutation (fa/fa) (Zucker and Zucker 1961). The affected rats 

become obese and defend their obese body composition despite a variety 

of treatments. These include food restriction (Bray et al. 1973, Cleary 

et al. 1980), jejunoileal bypass surgery (Greenwood et al. 1982), and 

treatment with a fatty acid synthesis inhibitor (Greenwood et al. 1981). 

The metabolic defect underlying the obesity is as yet unknown. 

However, it has been suggested that the obesity is a consequence of 

subnormal protein synthesis, which results in increased shunting of 

nutrients into fat synthesis. Obese male Zucker rats deposit less body 

protein than lean ones, and when the rats are pair-fed, the difference 

becomes more pronounced (Pullar and Webster 1974, Cleary and Vasselli 

1981). Adult obese male rats deposited a smaller percentage of a 

labelled amino acid dose as lean tissue than lean rats did (Dunn and 

Hartsook, 1980). Furthermore, obese weanling male Zucker rats 

incorporated less ̂ H-phenylalanine into muscle protein than their lean 

counterparts (Reeds et al. 1982). 

However, although both male and female Zucker rats develop obesity, 

only the obese male Zucker rat has subnormal lean body mass. Body 

protein content of obese female Zucker rats is normal or above-normal at 

24, 33, 50, 66 and 98 days of age (Radcliffe and Webster 1976). 
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Furthermore, 19 week old obese female Zucker rats had above-normal body 

protein content (Walberg et al. 1984). Obese female Zucker rats 

deposited protein at rates similar to those of lean rats even when 

dietary protein content was below optimum levels (Radcliffe and Webster 

1979). Even pair-feeding of obese female Zucker rats to lean rats did 

not lower their lean body weight (Bray et al. 1973). This evidence 

suggests that, compared to obese male rats, obese female Zucker rats are 

better able to defend lean body mass. 

Many of the characteristics of the obese female Zucker rat are 

similar to those of ovariectomized rats. These include hyperphagia and 

obesity (Radcliffe and Webster 1976) as well as functional sterility and 

delayed vaginal opening (Bray et al. 1976). Furthermore, the above-

normal lean body mass of obese female rats is similar to the increase in 

lean body mass associated with ovariectomy in normal rats (Dohm and 

Beecher 1981, Shaw et al. 1983). These findings suggest subnormal 

estrogen status of obese female Zucker rats. 

Because fa/fa rats of both sexes develop obesity, the underlying 

metabolic defect is apparently identical in male and female obese Zucker 

rats. Therefore, any explanation for the obesity must be consistent 

with the known characteristics of both male and female rats. 



www.manaraa.com

3 

Statement of Rationale 

Experiment. 1: Effects of exercise on growth and 3-methylhistidine 

excretion of female Zucker rats 

Forced exercise can be used as a stress to growth and protein 

metabolism. Male rats usually respond to exercise with decreased food 

intake, body weight and lean body weight. In contrast, female rats 

respond to exercise with increased food intake, body weight and lean 

body weight. 

As previously discussed, defective regulation of protein metabolism 

has been suggested as an underlying cause of the obesity of the Zucker 

rat. Experiment 1 employs exercise as a stress to growth so that this 

hypothesis can be tested in female rats. Urinary 3-methylhistidine 

(3-MH) was measured to determine whether or not any exercise-induced 

change in lean body mass is mediated through a change in muscle protein 

catabolism. 

Experiment 2: Effects of ethynyl estradiol on body composition growth 

and muscle protein catabolism of female Zucker rats 

The results of Experiment 1 showed that obese female Zucker rats 

resemble ovariectomized rat in as much as both groups have above-normal 

lean body mass and respond similarly to exercise. If obese female 

Zucker rats have subnormal estrogen status, then they may be more 

sensitive to estrogen administration than lean rats are. Experiment 2 

was designed to test if estrogen administration would normalize the 
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above-normal lean body mass, carcass fat content and organ weights 

associated with the obesity of female Zucker rats. Urinary 3-MH was 

measured to determine if any effect of estrogen on lean body mass was 

achieved through a change in muscle protein catabolism. 

Experiment 3: Development and protein metabolism of female Zucker rats 

A subnormal protein synthesis rate and lean body mass of weanling 

obese male Zucker rats may be caused by the metabolic defect underlying 

the obesity. However, female rats achieve normal or above-normal lean 

body mass despite the development of obesity. Experiment 3 was designed 

to determine the rate of protein synthesis of female Zucker rats at 

weaning and at onset of sexual maturity. Urinary 3-MH was measured to 

determine if the ability of the female Zucker rat to maintain normal 

lean body mass in early life is associated with alterations in muscle 

protein catabolism. 
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REVIEW OF LITERATURE 

The Zucker Rat as a Model of Obesity 

The obese Zucker rat is a mutant, first reported by Zucker and 

Zucker (1961), which appeared in a cross between Sherman and Merck stock 

M rats. The obesity results from an autosomal recessive mutation 

(fa/fa). 

The Zucker rat is used as a model of juvenile onset obesity. Many 

symptoms of the obesity syndrome are similar in both the Zucker rat and 

humans with juvenile onset obesity. These include hyperplastic-

hypertrophic adipose tissue, hypertriglyceridemia (Bray and York 1979), 

hyperinsulinemia (Zucker and Antoniades 1972), insulin resistance 

(Martin and Gahagan 1976), elevated lipoprotein lipase activity 

(Boulange et al. 1979), subnormal physical activity (Habery et al. 1980) 

and hyperphagia at an early age (Stern and Johnson 1977). 

The inability of the male Zucker rat to maintain normal lean body 

mass is in contrast to the symptoms of juvenile onset obesity. Most 

human obesity, including the juvenile onset type, is associated with 

above-normal lean body mass (Forbes and Welle 1983) whereas the obesity 

syndrome of the male Zucker rat is associated with subnormal lean body 

mass (Zucker 1967, Pullar and Webster 1974). Because the female Zucker 

rat achieves normal or above-normal lean body weight (Radcliffe and 

Webster 1976, 1978, 1979), perhaps the female, rather than the male, 

Zucker rat is a better model for juvenile onset obesity. 
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Obese Zucker rats defend their high body fat content despite a 

variety of treatments. These include food restriction (Bray et al. 

1973, Cleary et al. 1980), treatment with a fatty acid synthesis 

inhibitor (Greenwood et al. 1981), and jejunoileal bypass surgery 

(Greenwood et al. 1982). 

A problem encountered in research on the Zucker rat is separating 

the symptoms of the underlying cause of the obesity from the symptoms of 

the obesity itself, which develops at an early age. Although the 

affected rats are not visibly obese until four weeks of age, they can be 

identified by abnormally low oxygen consumption as early as 7 days of 

age (Planche et al. 1983). Also, body fat content is measurably 

increased by 13 days of age (Bell and Stern 1977) , and adipocyte 

hypertrophy is detectable by 5 to 7 days of age (Boulange et al. 1979). 

The obese rats become hyperphagic before weaning when presented with 

solid food, at about age 16 to 18 days (Stern and Johnson 1977). 

Obese Zucker rats are fat because of a metabolic defect in which 

abnormally high proportions of nutrients are shunted to fat rather than 

to lean (Deb et al. 1976, Pullar and Webster 1974, Zucker 1975). The 

nature of the defect has not been identified. However, some 

characteristics of the Zucker rat have been shown not to be the 

underlying cause of the obesity. Although obesity and hyperphagia occur 

together in these animals, hyperphagia is not the cause of the obesity 

(Bray and York 1979, Cleary et al. 1980, Deb et al. 1976, Stolz and 

Martin 1982). Even if obese rats are pair-fed with lean controls 
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obesity will still develop. Although the pair-fed obese rats contain 

less body fat than ad libitum fed obese rats, they are visibly obese and 

contain more body fat than lean controls (Cleary et al. 1980). 

Insulin resistance has also been proposed as the defect underlying 

the obesity of Zucker rats. When diabetes was induced in obese and lean 

rats with streptozotocin and all rats received the same level of 

exogenous insulin, increased hepatic lipogenesis and increased percent 

body fat in the obese rats were not normalized, although body weight and 

food intake were equal in both genotypes (Stolz and Martin 1982). The 

authors concluded that the conversion of more dietary energy to lipid in 

obese rats than in lean ones is independent of food intake and blood 

insulin levels. 

Many explanations of how various characteristics of the Zucker rat 

relate to the development of obesity are proposed in the literature. 

Consequently, a complete review of these relationships is impractical 

for the purposes of this thesis. A schematic representation of some of 

these relationships is presented in Figure 1. Citations at various 

steps are provided to indicate studies in which these relationships are 

discussed in detail. 

Relationship of hyperphagia and body protein content to the obesity of 

the Zucker rat 

As previously discussed, hyperphagia is not the cause of obesity in 

the Zucker rat. However, because the same underlying defect may cause 

hyperphagia and obesity, appetite regulation of Zucker rats has been 

studied. 
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Subnormal Protein Synthesis 
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/ 

\ I 
Insulin Resistance 

) .Additive 
Effects 

(Pullar and Webster 1974) 

Hyperinsulinemia Increased Energy Shunting to Fat 

(Stolz and Martin, 1982) 
(Chan et al., 1982) t (Zucker 1975) (Deb et al. 1976) 

Above-Normal Body Fat 

Hyperphagia 

FIGURE 1. Relationships of some characteristics of the Zucker rat to the development of obesity 
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A basis for studies on appetite regulation has been the difference 

in body protein content of lean and obese male Zucker rats. The 

absolute amount of protein and ash are similar for both genotypes from 

13 to 16 days of age, although body fat is increased in the obese rat as 

early as 13 days of age (Bell and Stem 1977). However, after 23 days 

of age, male obese rats, even when they were allowed to eat ad libitum, 

contained less body protein than lean controls (Reeds et al. 1982). 

These results led Pullar and Webster (1974) to suggest that obese Zucker 

rats deposit protein at a slower rate than lean rats do, and therefore 

overeat in an attempt to attain normal skeletal and muscle growth. In 

three separate studies (Radcliffe and Webster 1976, 1977 and 1978), 

using both male and female Zucker rats on a range of diets which varied 

in protein content, protein source, or both, the rate of protein 

deposition was lower in the obese males than in the lean males; in 

contrast, females of both genotypes maintained identical body protein 

content. One problem with this hypothesis is that even when fed a 

protein deficient diet the obese female rats deposited as much protein 

as the lean females did. This finding is inconsistent with the 

hypothesis that hyperphagia in obese Zucker rats represents an attempt 

to compensate for impaired ability to deposit protein. The authors 

nevertheless defended their hypothesis fay stating that, because males 

deposit protein at a faster rate than females, protein deposition rate 

to determine food intake occurs in both sexes but this relationship is 

obvious only in males. 
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To test the hypothesis that obese rats overeat to obtain sufficient 

dietary protein, Castonguay et al. (1982) presented a comstarch-vitamin 

mix, casein and corn oil, each in a separate container, to 10 week old 

lean and obese male Zucker rats. The rats were allowed to compose their 

own diet for nine days. Obese rats ate less casein, similar amounts of 

cornstarch mix and more com oil than their lean counterparts. These 

results were not consistent with the hypothesis that dietary protein is 

critically involved in appetite regulation in the Zucker rat. 

Other theories on appetite regulation have been presented. One is 

that obese rats are hyperphagic because of an abnormally high set point 

for food intake inhibition (Bray and York 1972). Another is that both 

obese and lean Zucker rats control food intake by sensing the heat 

increment of the diet rather than the composition or gross energy 

content of the diet (Jenkins and Hershberger 1978). The results of 

these studies on appetite regulation support the conclusion that the 

hyperphagia of obese Zucker rats cannot be explained by any particular 

diet composition. 

Evidence for Subnormal Estrogen Status of Female Zucker Rats 

In normal adult female rats, removal of endogenous estrogen by 

ovariectomy results in hyperphagia and body fat gain (Kakolewski et al. 

1968, Tarttelin and Gorski 1973), both of which can be reversed by 

estrogen administration (Landau and Zucker 1976, Hervey and Hervey 

1981). Ovariectomy of normal rats also increases lean body mass 
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compared to that of intact female rats (Dohm and Beecher 1981, Harris et 

al. 1984). 

Many of the characteristics of the obese female Zucker rat are 

similar to those of ovariectomized rats, thus suggesting subnormal 

estrogen status. These characteristics include hyperphagia, obesity and 

above-normal lean body mass (Radcliffe and Webster 1976, 1979, Shaw et 

al. 1983). Also, obese female Zucker rats exhibit decreased ovarian and 

uterine weights, functional sterility, delayed vaginal opening and 

ovarian cycle irregularities compared to lean female Zucker rats 

(Saiduddin et al. 1973, Bray et al. 1976). On the basis of these 

observations, Saiduddin et al. (1973) suggested that the Zucker rat has 

subnormal estrogen levels. However, the blood of both lean and obese 

rats contains normal concentrations of ovarian hormones (Hervey et al. 

1982). A decreased sensitivity of the reproductive tissues to estrogen 

could explain the reproduction abnormalities of obese Zucker rats. 

However, Bray et al. (1976) found that uterine tissues of both genotypes 

were equally sensitive to stimulation of growth by estrogen. When the 

degree of obesity was decreased by pair-feeding, the low weights of the 

uterus, ovary and pituitary gland of the obese female Zucker rats did 

not increase, indicating that the obesity itself is not the primary 

cause of subnormal reproductive function of obese Zucker rats (Bray et 

al. 1973). 
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Protein Turnover in Rats 

Protein turnover depends on both protein synthesis and protein 

degradation, which are under different control (Waterlow et al. 1978). 

The difference between the two rates determines the magnitude of net 

protein deposition or loss. In the case of the growing rat, the protein 

turnover rate in the whole body is three times greater than the rate of 

protein accumulation in a tissue (Buckley and Milligan 1978). However, 

the rates of protein synthesis and degradation, as well as control of 

protein accumulation, vary widely between tissues. For example, in 

rapidly growing animals and during compensatory growth after fasting, 

growth of skeletal muscle is associated with an increase in protein 

degradation but an even greater increase in protein synthesis, resulting 

in net protein accumulation (Waterlow et al. 1978, Buckley and Milligan 

1978). However, under similar conditions, liver growth results 

primarily from reduced protein degradation (Conde and Scomick 1976, 

Hutson and Mortimore 1982). 

Studies performed on perfused tissues in vitro have yielded 

valuable information on protein turnover. However, in vitro conditions 

during measurement of protein synthesis and degradation sometimes result 

in negative nitrogen balance, probably due to the lack of innervation 

and hormonal stimuli present in vivo (Li and Goldberg 1976, Durschlag 

and Layman 1983). For this reason, emphasis has been placed on the 

development of techniques which would allow protein synthesis and 

degradation to be studied in the whole animal. 
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Protein synthes is 

Regulation of protein synthesis The amount of protein produced 

could be regulated by alterations in the amount of messenger ribonucleic 

acid (RNA), number of ribosomes, rate of chain initiation or elongation, 

amount of energy available, and amino acid pool size within the cell 

(Waterlow et al. 1978). Long-term adaptations in protein synthesis 

rates in various tissues are related to the RNA content of the cells 

(Millward et al. 1973), whereas short-term adaptation of muscle protein 

synthesis involves no change in RNA content of the cell. 

Protein synthesis in muscle responds rapidly to alteration in 

nutritional state in rats. When rats are receiving frequent meals, 

there is no diurnal variation in protein synthesis or protein turnover 

(Buckley and Milligan 1978). Once food intake ceases, protein synthesis 

and amino acid oxidation decrease (Clugston and Garlick 1982, Rennie et 

al. 1982). The reduced rate of protein synthesis occurs only after the 

stomach is empty, and this reduction can be reversed completely in 60 

minutes with refeeding (Garlick et al. 1983). For a review of the 

effects of dietary alteration on protein synthesis see Waterlow et al. 

(1978). 

Hormones, especially insulin and corticosteroids, alter rates of 

protein synthesis. Insulin is necessary for optimal protein synthesis 

in muscle (Goldberg 1979, Odedra et al. 1982). Changes in protein 

synthesis in vivo are associated with parallel changes in insulin levels 

(Millward et al. 1974). Corticosterone administration decreases 
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skeletal muscle protein synthesis (Millward et al. 1976, Rannels et al. 

1978) and increases protein degradation (Tomas et al. 1979). 

Corticosterone decreases protein synthesis in muscle even when insulin 

levels are high (Odedra and Millward 1982, Odedra et al. 1983). 

Millward et al. (1983) suggest that short-term regulation of muscle 

protein synthesis involves insulin, corticosterone and another unknown 

anabolic factor. 

However, the control mechanism of the long-term regulation of 

protein synthesis, such as the difference in protein deposition between 

males and females, is still unknown. 

Measurement of protein synthesis As stated previously, most 

research on protein synthesis has been done in vitro or the rate of 

protein synthesis has been calculated from the amount of protein 

deposited. The techniques of constant infusion and single dose of 

labelled amino acids have made accurate measurement of protein synthesis 

in vivo possible (Waterlow et al. 1978). The single dose technique 

involves a single intravenous injection of a mixture of labeled and 

unlabelled amino acid so that cellular amino acid pools are quickly 

flooded. Equilibrium of blood and tissue amino acid levels is rapidly 

reached and is followed by a slow but linear decline in plasma and 

tissue levels of the free amino acid. By measuring this linear decline 

and the amount of amino acid incorporated into protein, a rate of 

protein synthesis can be calculated (Garlick et al. 1980). The major 

advantage of this method is that it requires less time than the constant 
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infusion technique, which requires six hours to complete. Also, in 

small laboratory animals, the use of the single dose method avoids the 

effects of stress due to restraint or anesthesia which are required for 

the constant infusion method. 

Protein degradation and 3-methylhistidine excretion 

The urinary excretion of 3-methylhistidine (3-MH) has been widely 

used as an indicator of muscle protein catabolism (Ward and Buttery 

1980, Young and Munro 1978). Tallan et al. (1954) originally identified 

this amino acid as a normal constituent of human urine. ' Later, 3-MH was 

identified as a component of actin (Asatoor and Armstrong 1967) and of 

myosin (Johnson et al. 1967). The 3-MH content of actin is constant 

from all sources measured thus far (Trayer et al. 1968, Young and Munro 

1978). In contrast, 3-MH is a component of myosin in fast-twitch 

(white) muscle fibers but not of myosin in cardiac muscle and slow 

twitch (red) muscle fibers (Kuehl and Adelstein 1970, Trayer et al. 

1968). 

The formation of 3-MH occurs by methylation of histidine residues 

of newly synthesized protein (Krzysik et al. 1971, Reporter 1973). 

Because no tRNA charging with 3-MH occurs, 3-MH is not re-utilized in 

protein synthesis (Young et al. 1970). Rapid and quantitative excretion 

of 3-MH via the urine has been demonstrated in rats (Young et al. 1972) 

and in humans (Long et al. 1975). The 3-MH released during muscle 

protein catabolism is excreted in the urine as either unchanged 3-MH or 

as N-acetyl 3-MH. The N-acetyl form of 3-MH is predominant in the urine 
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of rats (Young et al. 1972). However, in humans, only 5% of the total 

excretion is the N-acetyl form, and the remainder is excreted as 

unchanged 3-MH (Long et al. 1975). Because 3-MH is not reutilized and 

is quantitatively excreted in the urine, the accurate measurement of 

3-MH released from muscle in vivo requires that the diet of the animal 

or subject be 3-MH-free. 

Urinary 3-MH as an indicator of skeletal muscle catabolism 

The use of urinary 3-MH as an indicator of skeletal muscle protein 

degradation is now widespread (Young and Munro 1978, Ward and Buttery 

1980). Although 3-MH excretion has been validated as a product of 

muscle protein catabolism, its use as an indicator of skeletal muscle 

protein catabolism specifically is a controversial matter. Skeletal 

muscle is the major source of 3-MH in the total body 3-MH pool 

(Haverberg et al. 1975, Nishizawa et al. 1977a). The gastrointestinal 

tract and skin contribute 10 to 17% of the total body 3-MH pool 

(Nishizawa et al. 1977a, 1977b). Other tissues such as heart, lung, 

liver, etc., contain 3-MH but the relative contribution of 3-MH in these 

tissues to the total body pool is small (Haverberg et al. 1975). 

The assumption that skeletal muscle is the major contributor to 

urinary 3-MH because it is the major component of the total body 3-MH 

pool could be invalid because 3-MH release depends upon 3-MH turnover 

rate, as well as amount, in various tissues. A small tissue pool of 

3-MH with a high turnover rate could be a major source of urinary 3-MH 

(Millward et al. 1980). In an attempt to determine the relative 
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contribution of skeletal muscle, gastrointestinal tract and skin to 

urinary 3-MH, the rates of protein synthesis, 3-MH synthesis and 3-MH 

turnover have been measured by various methods. In several studies, one 

group of investigators determined that the contribution of skeletal 

muscle ranged from 24 percent to 74 percent of the total urinary 3-MH 

excretion in the rat (Bates and Millward 1981, Millward and Bates 1983, 

Rennie and Millward 1983). Harris (1981) and Wassner and Li (1982) 

discussed sources of variation in results of the above studies, 

including differences in age and sex of the rats, methods of 

measurement, and assumptions made in calculations. Other investigators 

estimated that skeletal muscle contributed approximately 75% of the 

total urinary 3-MH excretion both in the rat (Nishizawa et al. 1977a) 

and in the human (Afting et al. 1981). Wassner and Li (1982) measured 

the fractional catabolic rate of 3-MH in various perfused tissues and 

determined that the gastrointestinal tract contributed 40% of the total 

urinary 3-MH excretion in the male rat. Because of the conflicting 

evidence presented by various investigators, studies in which 3-MH 

excretion is measured should be interpreted cautiously. 

Protein Metabolism in the Zucker Rat 

Subnormal protein synthesis, which results in increased shunting of 

nutrients into fat synthesis, has been suggested as an underlying factor 

in the development of obesity in the Zucker rat. The obese male Zucker 

rat deposits less body protein than the lean male rat, and when pair-

fed, the difference becomes more pronounced (Pullar and Webster 1974, 
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Cleary and Vasselli 1981). Adult male obese rats injected with ̂ "C-

labelled amino acids deposit a smaller percentage of the total dose as 

lean tissue and a greater percentage of the total dose as lipid than 

lean rats. Obese rats excreted more 3-MH/g body protein than lean rats 

(Dunn and Hartsook 1980). However, in this study the labelled amino 

acid dose was based on body weight, not on estimated body protein 

content, and calculations were not corrected for the amount of label 

presented to lean tissues. Also, measurement of total in the tissue 

did not discriminate between free and protein-bound label. In contrast, 

as a result of measurements of carcass composition and nitrogen 

retention, Pullar and Webster (1974);D suggested that fractional rates 

of protein deposition are similar in both genotypes. 

The conflicting evidence regarding altered protein synthesis in 

adult male Zucker rats led Reeds et al. (1982) to study protein 

synthesis in weanling male rats. The authors suggest that the 

metabolism of weanling rats is not yet dominated by long-term obese body 

composition. Protein synthesis was measured in 18 and 27 day old lean 

and obese males using intraperitoneal injection of a single dose of 

labelled phenylalanine. Obese rats synthesized less muscle protein than 

lean rats, but the difference was greater at 18 days than at 27 days of 

age. However, there were no differences in liver and intestine protein 

synthesis rates between genotypes. One reason for this might be the use 

of intraperitoneal injection instead of intravenous injection. 

Intraperitoneal injection of the labelled amino acid might result in 
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adsorption of the label onto the surface of the visceral organs, thus 

delaying attainment of equilibrium between blood and tissue. This would 

alter the linear decline of tissue label levels on which the accuracy of 

this method depends (Garlick et al. 1980). Reeds et al. (1982) 

suggested that the obese rat has a period of subnormal protein synthesis 

during early life. After this early phase, the obese rat synthesizes 

protein at the normal rate, but cannot further increase protein 

synthesis to achieve normal protein deposition. The early difference in 

protein synthesis rate could increase energy available for fat storage 

in obese rats and therefore may in part explain their obesity. However, 

the protein synthesis rates of male Zucker rats over 27 days of age, and 

female Zucker rats of all ages, are unknown. The development of obesity 

in female Zucker rats, despite their ability to maintain normal lean 

body weight throughout life, is not explained by this hypothesis. 

Because both male and female Zucker rats become obese, the underlying 

metabolic defect is apparently the same in both sexes. Therefore, any 

explanation of the obesity must accommodate the characteristics of both 

sexes. 

Exercise Studies in Rats 

Forced exercise in small laboratory animals is used to determine 

the effects of physical training on endurance and other physiological 

characteristics as well as the effects of drugs and diets on 

performance. Because different methods of exercise produce different 
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physiological and psychological stresses, it is difficult to compare one 

type of exercise with the other. This difficulty is illustrated by two 

studies in which female rats were exercised by treadmill running or by 

swimming (Schiable et al. 1981, Schiable and Scheuer 1981). Both 

studies included intensive long-term exercise programs in which exercise 

increased the heart weight, stroke work, stroke volume, coronary flow 

and cardiac oxygen consumption of male rats. The treadmill exercised 

female rats showed no change in cardiac weight or function; however, 

swim-trained female rats showed significant increases in heart weight 

and cardiac function compared with sedentary controls. Difficulties 

also arise in ensuring that each swimming rat within an experiment 

performs the same amount of work, and in comparing the amount of work 

done by swimming rats and by running rats. For these reasons, this 

discussion will include results obtained only with treadmill exercised 

rats. 

Food intake and body composition of treadmill exercised rats 

Male rats exercised daily on a treadmill from 6 to 18 weeks of age 

gained less weight and attained lower final body weights than sedentary 

controls do (Schiable et al. 1981). Male rats subjected to bouts of 

exercise every three days ate less, and as duration of exercise 

increased, the percent body fat decreased (Stevenson et al. 1966). Dohm 

et al. (1977a) compared sedentary male rats with rats exercised at three 

different intensities. Exercised rats had decreased body weight, body 

fat content and body protein content compared with sedentary rats; 
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these changes were independent of exercise intensity. A study involving 

sedentary and exercised castrated and intact male rats demonstrated that 

exercise and castration had similar effects on decreasing food intake 

and weight gain (Dohm and Beecher 1981). 

In contrast to male rats, young female rats respond to exercise by 

increasing food intake and gaining weight at the same rate as sedentary 

controls (Nance et al. 1977, Dohm and Beecher 1981, Tapscott et al. 

1982). Female rats also respond to exercise by increasing their lean 

body weight (Dohm and Beecher 1981, Tapscott et al. 1982). However, 

Schiable et al. (1981) found that exercise decreased weight gain in 

female rats, although less markedly than in male rats. 

In summary, exercise usually decreases food intake, body weight 

gain, and lean body mass in male rats, but has the opposite effects in 

female rats. In both sexes, exercise decreases the absolute amount as 

well as the percentage of carcass fat. 

Effects of exercise on protein turnover in rats 

The exercise-induced growth inhibition in male rats might be caused 

by appetite suppression by exercise. However, when sedentary and 

exercised male rats were pair-fed, growth was still inhibited by 

exercise, and this inhibition was greater than could be explained by the 

calculated energy expenditure of the exercise. Also, the growth 

inhibition by exercise was not altered when exercise intensity was 

increased (Dohm et al. 1977a). 
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Male rats responded to a bout of exercise by decreasing in vivo 

protein synthesis during exercise (Dohm et al. 1982a). Dohm et al. 

(1985) suggest that the degree of depression of in vivo muscle protein 

synthesis is proportional to both the duration and intensity of 

exercise. 

Reports of increased urinary nitrogen and less positive nitrogen 

balance in exercised rats led to the suggestion that exercise may result 

in greater protein catabolism, especially in male rats (Dohm et al. 

1977b). This hypothesis is consistent with the finding of increased 

urea excretion in exercised male rats (Dohm et al. 1977b, Refsum and 

Stromme 1974) but not in exercised female rats (Dohm et al. 1978). 

Tapscott et al. (1982) measured protein synthesis and degradation 

rates by perfusing hindquarters of exercised and sedentary male and 

female rats with a solution containing ̂ H-tyrosine. Both protein 

synthesis and degradation were more rapid in sedentary females than in 

sedentary males. However, the difference in degradation rate between 

the sexes was greater than the difference in rate of synthesis; this 

could result in a decreased deposition of protein in females and may 

partly explain their lower growth rate compared with that of male rats. 

Exercise resulted in increased protein degradation and unchanged protein 

synthesis in male rats. In contrast, exercise had no effect on protein 

synthesis or degradation in females. This lack of effect in the female 

rat may partly explain the opposite growth responses to exercise by male 

and female rats. 
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Few reports are available on the effect of exercise in rats on 

3-methylhistidine (3-MH) excretion, which is assumed to be proportional 

to muscle protein catabolism. A bout of exercise has been shown to 

increase the 3-MH excretion of male rats for 48 hours following exercise 

(Dohm et al. 1978a). Long-term treadmill training of male rats also 

resulted in increased 3-MH excretion compared with that of sedentary 

controls (Radha and Bessman 1983). However, no data are available on 

3-MH excretion by treadmill trained female rats. 

Effects of exercise on food intake and body composition of Zucker rats 

Because few reports on exercised Zucker rats are available, the 

effects of exercise in these animals are not well-established. When 

obese and lean exercised male Zucker rats and obese sedentary males were 

all pair-fed to lean sedentary controls, exercise decreased body fat in 

both genotypes (Deb and Martin 1975). The lean male rats in this 

particular study responded atypically to exercise in that neither food 

intake nor body protein content decreased with exercise. As expected, 

the obese rats had less body protein than the lean rats. However, the 

obese exercised rats had greater body protein than obese sedentary rats. 

This effect is the opposite of the decrease in lean body mass usually 

seen in exercised male rats of other strains. Exercise had no effect on 

adipose cellularity or on the hyperinsulinemia that is characteristic of 

the Zucker rat (Deb and Martin 1975). In another study, both lean and 

obese male Zucker rats responded normally to exercise by decreasing food 

intake, weight gain and lean body mass (Wardlaw 1984). Furthermore, 
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exercise did not decrease the high percent body fat of obese male Zucker 

rats. The different effects of exercise in these studies may be 

explained by the fact that rats in the latter study were not pair-fed to 

sedentary controls. 

In another study, lean male Zucker rats responded normally to 

exercise by decreasing food intake, body weight and carcass protein and 

fat content (Seelbach et al. 1985). In contrast, the same training 

program for obese Zucker rats resulted in no change in food intake and 

body protein content compared to sedentary counterparts. Exercise 

slightly decreased, but did not normalize, carcass fat content of obese 

Zucker rats. The different responses of lean and obese Zucker rats to 

exercise may also be explained by the different training programs of 

each study. The training program of Wardlaw (1984) was least strenuous 

while that of Seelbach et al. (1985) was most strenuous. 

Moderate treadmill training in adult (25 week old) obese female 

Zucker rats had no effect on body weight, food intake, or skeletal 

muscle mass (Becker-Zimmerman et al. 1982). In the same study, a more 

intensive exercise program, started at seven weeks of age in obese 

female Zucker rats, produced effects which in general were more marked 

than those observed in the adult rats. Although there were no 

differences in food intake or skeletal muscle mass between exercised and 

sedentary young females, the exercised rats had decreased body weight. 

However, the effects of exercise on body composition, food intake and 

glucose tolerance in the lean female Zucker rat are largely unknown. 
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Because lean female Zucker rats were not included in this study, it is 

impossible to compare the obese animals to the lean ones or to know 

whether the effects of exercise are the same in both genotypes. 

In another study, both lean and obese female Zucker rats were 

exercised from 5 to 11 weeks of age (Wardzala et al. 1982). The lean 

rats responded normally to exercise by increasing final body weight 

compared to that of sedentary counterparts. However, exercise had no 

effect on final body weight of obese rats. The results of this study 

did not include any information on food intake or body composition of 

exercised female Zucker rats. 

Interrelationship of Protein Metabolism, Corticosterone and Obesity in 

the Zucker Rat 

Effects of corticosterone in normal rats 

Corticosterone is the major glucocorticoid produced by the adrenal 

gland in the rat. Elevated blood concentrations of corticosterone 

results in net muscle protein loss (Steele 1975). It has been 

established that corticosterone supresses muscle protein synthesis 

(Millward et al. 1976, Rannels et al. 1978). However, the effect of 

corticosterone on muscle protein degradation is controversial. 

Subcutaneous injection of corticosterone increased 3-MH excretion in 

rats (Tomas et al. 1979, Santidrian et al. 1981, Tomas et al. 1984b). 

In contrast, intraperitoneal injection of corticosterone did not change 

protein degradation rates (Millward et al. 1976, Shoji and Pennington 
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1977). Santidrian et al. (1981) suggest that the route of 

corticosterone administration may cause the discrepancy in these 

results. 

Although muscle protein synthesis is decreased with corticosterone 

administration, liver weight and total protein content of liver is 

increased (Tomas et al. 1984b). Corticosterone administration also 

results in elevated plasma levels of protein and glucose. Tomas et al. 

(1984b) suggest that the decreased synthesis and increased catabolism of 

muscle protein associated with corticosterone administration results in 

greater nutrient availability to the liver for synthesis and storage. 

Corticosterone administration also increases plasma insulin levels, 

which antagonizes the effects of corticosterone on protein turnover. 

Corticosterone administration increased plasma insulin levels in rats 

(Steele 1975, Tomas et al. 1979). This effect of corticosterone may be 

the result of decreased protein synthesis, which may decrease the 

production of insulin receptors. Tomas (1982) found that the elevated 

plasma insulin levels associated with corticosterone administration 

diminished the effects of corticosterone. This antagonism is primarily 

achieved by insulin moderating the increased muscle protein degradation, 

but also by limiting decreased protein synthesis (Millward et al. 1983, 

Tomas et al. 1984a). However, in diabetic rats insulin provided only 

minor protection against the effects of corticosterone (Odedra and 

Millward 1982). Therefore, high insulin levels may diminish, but will 

not prevent the effects of corticosterone administration. 
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Relationships of corticosterone to the obesity of the Zucker rat 

The obese Zucker rat has elevated plasma levels of corticosterone 

and insulin (Martin et al. 1978, Zucker and Antoniades 1972). 

Furthermore, the normal diurnal variation in plasma corticosterone 

levels is absent in the obese Zucker rat (Martin et al. 1978). This 

evidence suggests adrenal gland malfunction in the obese Zucker rat. 

The ability of elevated plasma corticosterone to decrease muscle 

protein synthesis is consistent with the characteristics of the obese 

male Zucker rat. The adult obese male Zucker rat has subnormal lean 

body mass (Pullar and Webster 1974, Radcliffe and Webster 1979). The 

weanling obese male rat exhibits subnormal muscle protein content at 21 

days of age and subnormal muscle protein synthesis rates at 18 days of 

age (Reeds et al. 1982). Also, hyperinsulinemia and increased liver 

weight, which are consequences of elevated corticosterone levels, are 

present in the obese Zucker rat. Furthermore, Czech et al. (1978) 

suggests that the decreased number of muscle insulin receptors in the 

obese Zucker rat may be related to the ability of corticosterone to 

decrease protein synthesis. 

Although fat cell size may be increased in the obese Zucker rat by 

7 days of age (Planche et al. 1983), the overt symptoms of obesity 

appear at weaning. These symptoms include hyperphagia (Planche et al. 

1983), hyperinsulinemia (Zucker and Antoniades 1972) and visibly obese 

body composition. However, the onset of subnormal protein synthesis in 

the male obese Zucker rat precedes weaning (Reeds et al. 1982). 
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Furthermore, it is estimated that full maturity of the adrenal gland is 

reached at 14 to 20 days of age in the rat (Henning 1978). Therefore, 

full adrenal gland function is achieved just prior to the onset of many 

of the obesity symptoms. 

Effect of adrenalectomy on the obese Zucker rat 

Adrenalectomized 10 week old obese Zucker rats had decreased food 

intake, weight gain and body fat compared to intact obese Zucker rats 

(Yukimura and Bray 1978). However, the body fat content was not reduced 

to normal lean levels. Adrenalectomy of 5 week old obese Zucker rats 

resulted in normal weight gain and reduced (but not normal) food intake, 

body fat, serum insulin and fatty acid synthesis rates (York and Godbole 

1979, Holt et al. 1983). Adrenalectomy of obese Zucker rats has also 

been shown to correct other symptoms of the obesity. These symptoms 

include brown adipose tissue mass and thermogenesis (Holt et al. 1983, 

Marchington et al. 1983) and adipocyte cell size (Freedman et al. 1985). 

The obese Zucker rats of these studies had markedly elevated body fat 

content by the time of adrenalectomy, which may explain the failure of 

adrenalectomy to completely normalize the symptoms of obesity. 

In contrast to older obese rats, adrenalectomy of 21 day old obese 

rats abolished obesity, hyperphagia and hyperinsulinemia (Fletcher 

1985). Although corticosterone administration to these rats reversed 

most of the effects of adrenalectomy, it had no effect on food intake. 

Fletcher (1985) suggests that adrenal-derived factors, other than 

corticosterone, may be necessary for full expression of the obesity 
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syndrome. Although lean body mass of the obese rats was not reported, 

it may be assumed that if body weight and body fat is normal in 

adrena1ectomized fa/fa rats, then lean body mass must also be normal. 

Therefore, adrenalectomy can correct many of the symptoms of the obesity 

of the Zucker rat. 

In contrast to the theory that adrenal malfunction may cause 

obesity in the Zucker rat. Bray and Fis1er (1985) suggest that a 

hypothalamic defect may cause the obesity, in which elevated 

corticosterone levels are necessary for the full expression of the 

symptoms. This theory is supported by the fact that elevated 

corticosterone levels result in obesity in other rats, not just the 

genetically obese Zucker rat (Sclafani 1984). Furthermore, 

adrenalectomy of ventromedial hypothalamus lesioned rats will prevent 

the characteristic increases in body fat and food intake (Bruce et al. 

1982). Also, hypophysectomy slows the progress of obesity in the Zucker 

rat (Powley and Norton 1976). This evidence suggests that defective 

hypothalamic regulation may be the primary cause of obesity in the 

Zucker rat. 

The hypothesis that adrenal gland malfunction is an underlying 

factor in the obesity of Zucker rats is inconsistent with the 

characteristics of female Zucker rats. The ability of female Zucker 

rats to achieve normal or above-normal lean body mass suggests that 

either protein synthesis is increased or protein catabolism is decreased 

in these rats-. Both of these implied conditions are the opposite of the 
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effects of high plasma corticosterone levels in rats. Because both male 

and female rats become obese, the underlying metabolic defect is 

apparently the same in both sexes. Therefore, either adrenal gland 

malfunction is not an underlying factor in the obesity or the obese 

female rat overcomes some of the effects of adrenal gland malfunction, 

thereby maintaining normal lean body mass despite the development of 

obesity. 
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EXPERIMENT 1: EFFECTS OF EXERCISE ON GROWTH AND 3-METHYLHISTIDINE 

EXCRETION OF FEMALE ZUCKER RATS 

Introduction 

The obese Zucker rat is a mutant, first reported by Zucker and 

Zucker (1961). Because body fat content is measurably greater in 

homozygotes than in heterozygote siblings by 13 days of age (Bell and 

Stem, 1977), and the adipose tissue is hypertrophic-hyperplastic, the 

Zucker rat is a useful model of juvenile onset obesity in humans. Obese 

Zucker rats are fat because of a metabolic pattern in which an 

abnormally high proportion of energy is converted to fat rather than to 

lean tissue. Although the metabolic defect has not been identified, the 

use of treadmill exercise as a stress to lean tissue may clarify the 

nature of this defect. 

Forced exercise in small laboratory animals is used to determine 

the effects of physical training on growth, body composition, protein 

catabolism and other physiological characteristics. Male rats respond 

to forced exercise by decreasing food intake, weight gain and lean body 

mass (Dohm et al. 1977a, Schiable et al. 1981). Exercised male rats also 

increase whole body protein breakdown even though protein synthesis is 

unchanged (Tapscott et al. 1982). In contrast to male rats, young 

female rats respond to exercise by increasing food intake and lean body 

weight and gaining weight at the same rate as sedentary controls (Nance 

et al. 1977, Dohm and Beecher 1981, Tapscott et al. 1982). Exercise had 
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no significant effect on protein synthesis or degradation in female rats 

(Tapscott et al. 1982). This lack of effect in the female rat may 

partly explain the opposite growth responses to exercise by male and 

female rats. 

Few reports of the effects of forced exercise in Zucker rats are 

available. Lean and obese male Zucker rats respond to exercise in the 

same way as other strains with respect to food intake, weight gain and 

lean body mass (Wardlaw 1984). Treadmill training of 7 and 12 week old 

obese female Zucker rats produced no change in food intake (Becker-

Zimmerman et al. 1982, Wardzala et al. 1982) or skeletal muscle mass 

(Becker-Zimmerman et al. 1982) and only a slight decrease in body weight 

(Becker-Zimmerman et al. 1982, Wardzala et al. 1982) compared to 

sedentary obese female rats. 

The urinary excretion of 3-methylhistidine (3-MH) has been widely 

used as an indicator of muscle protein breakdown (Ward and Buttery 1980, 

Young and Munro 1978). Long-term treadmill training of male rats 

resulted in increased 3-MH excretion compared with that of sedentary 

controls (Kasparek et al. 1980). However, no data are available on 3-MH 

excretion by treadmill trained female rats. 

The purpose of the present study was to determine if lean and obese 

female Zucker rats respond to exercise as normal female rats do and to 

determine the effects of exercise on the obesity and muscle protein 

breakdown rate of female Zucker rats. 
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Methods 

Female lean and obese Zucker rats were obtained from the animal 

breeding colony of the Food and Nutrition Department of Iowa State 

University, either at weaning or at 6 weeks of age. The rats were caged 

individually in a room lighted from 0600 to 1800 hours with a 

temperature range of 22-24 C. Standard pelleted laboratory animal diet 

and water were provided ad libitum. 

Rats in exercised groups were forced to exercise daily on a 

treadmill. The treadmill consisted of eight compartments, with a shock 

grid at the rear of each, suspended above a motor driven tread. By the 

end of the conditioning period, the rats ran willingly without the use 

of electric shock. During an initial ten-day conditioning period, the 

duration and speed of the treadmill exercise was gradually increased 

until the full intensity of the training program was reached. The 

training program consisted of daily exercise from 80 days of age to 120 

days of age for 30 minutes at 17 meters/min and 8 degrees incline for 

lean rats. It was found that obese rats had great difficulty in 

attempting to run at 17m/min; therefore, for obese rats, treadmill speed 

was decreased to 12 m/min. The duration of exercise was adjusted as 

necessary to compensate for the greater body weight of the obese animals 

by the following formula: Duration for obese rats(min) = (Avg. 

B.W.lean)x(17m/min)x(30min)/ (Avg. B.W. obese)x(12m/min). 

All rats were weighed daily, before exercise for the exercised 

groups. Five days before the last day of exercise, all rats were caged 
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in metabolism cages and fed the control 3-MH-free diet (Table 1). Food 

intake was measured for the last three days of exercise and a 24 hour 

urine collection was completed on the last day of exercise. All rats 

were killed on the last day of exercise. 

Carcass weight was measured after decapitation and evisceration. 

Carcasses were homogenized in a Waring blender with an equal weight of 

ice water. Carcass fat was determined on duplicate aliquots of carcass 

homogenate by hexane extraction on a Goldfisch extraction apparatus 

(Mickelsen and Anderson 1959). Carcass lean was calculated as the 

difference between carcass weight and carcass fat. Percent carcass fat 

was calculated as the percent of carcass weight as carcass fat. Urinary 

3-methylhistidine was determined on urine collected during the last 24 

hours of the study. Before analysis, urine samples were hydrolyzed in 

6N HCl at lOOC for 24 hours. Urine samples were analyzed by the 

Biochemistry-Biophysics Department, Iowa State university, using a 

Durrum D-400 amino acid analyzer with a 0.6 cm x 27 cm Durrum DC-6A 

column. A flow rate of 32 ml/hr and temperature of 61C were used with 

detection of post-column ninhydrin derivatives. The following buffer 

solutions were used for 3-MH elution. Buffer A (0.2N lithium citrate 

with 1.2N lithium chloride adjusted to a pH of 4.5) for 65 minutes. 

Buffer B (0.2N lithium hydroxide) for 40 minutes, then the column was 

reequilibrated with Buffer A for 50 minutes. 3-MH was eluted at 83 

minutes and total run time was 125 minutes. Analysis of variance was 

used for all statistical analyses (Steel and Torrie 1980). 
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TABLE 1. Composition of 3-MH-free diet ̂  

g/lOOg diet 

Casein 20.0 

DL-Methionine 0.3 

Briggs Salt Mix 5-0 

AIN Vitamin Mix 2.0 

Safflower Oil 5.0 

Fiber (Cellufil) 3.7 

Cornstarch 64.0 

Âll ingredients purchased from United Biochemical Corporation. 
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All experimental animals and proposed experimental proceedures 

involving the animals were given prior approval by the Laboratory Animal 

Facilities Committee. 

Results 

Weight gain and food intake 

Exercise had no significant effect on body weights of either lean 

or obese rats during the full exercise program (Figure 2). However, 

during an initial 10 day conditioning period, exercise decreased weight 

gain of both obese and lean rats (Table 2). During the period of full 

exercise, exercise significantly (p<0.05) decreased the total weight 

gain of obese rats but not of lean rats. As shown in Table 2, food 

intake was not affected by exercise. As expected, the food intake, when 

expressed as g/lOOg body weight/day was lower for obese rats than for 

lean rats. 

Body composition and organ weights 

Lean rats responded to exercise by increasing lean carcass weight. 

In contrast, exercise resulted in a slight, and not significant, 

decrease in lean carcass weight of obese rats (Table 3). Lean carcass 

weight of lean sedentary rats was significantly (p<0.005) less than that 

of lean exercised rats and of both groups of obese rats. Exercise 

decreased the percent carcass fat of lean rats, but not of obese rats 

(Table 3). Heart, liver and spleen weights were unaffected by exercise 
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in either lean or obese rats. However, the organ weights of all obese 

rats were significantly (p<0.001) greater than those of all lean rats. 

This genotype effect was evident in absolute organ weights (Table 4) and 

when organ weights were expressed relative to lean carcass weight (Table 

5). 

Urinary 3-methylhistidine 

As shown in Table 6, both exercised and sedentary obese rats 

excreted significantly (p<0.001) greater amounts of 3-MH than either 

exercised or sedentary lean rats. Exercise significantly (p<0.01) 

decreased urinary 3-MH excretion in lean rats but had no effect in obese 

rats. 

Discussion 

Weight gain and food intake 

Young female exercised rats normally increase food intake and gain 

weight at a rate equal to that of sedentary female rats (Nance et al. 

1977, Dohm and Beecher 1981, Tapscott et al. 1982). Lean female 

exercised and sedentary rats in this study also gained weight at similar 

rates (Table 2). Although the exercised obese rats gained less weight 

than sedentary obese rats, the final body weight of exercised and 

sedentary obese rats was not significantly different because of the 

large variation in body weight of the obese rats (Table 3). The 

decreased weight gain during conditioning in both exercised groups has 

not been reported by other investigators (Table 2). However, data on 
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TABT.F 2. Weight gain and food intake of exercised and sedentary female 
Zucker rats 

Genotype Treatment 
a Weight Gain 
Conditioning 

Total Weight Gain 
Full Exercise 

Food Intake 

S g g/lOOg bw/day 

Lean Sed 20.8̂  35.6̂  6.6̂  

Lean Exer 15.0% 41.3̂  6.5A 

Obese Sed 50.3̂  106.0̂  5.2» 

Obese Exer 41.gC 83.gc 5.2® 

L.S.D.̂  3.8 7.5 0.4 

n̂=12 for all groups. 

êast Significant Difference. 

A—C 
Different superscript within column indicates significant 

difference (p <0.001). 
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the conditioning period (if any) have not been separated from the data 

on full training presented in other studies of exercised female rats. 

Although female rats generally increase food intake in response to 

exercise, no such response was evident in this study, possibly because 

the rats were no longer rapidly growing when food intake was measured. 

However, in a study of 10 week old female Zucker rats, exercise 

increased the food intake of lean rats but had no effect on the food 

intake of obese rats (Wardzala et al. 1982). This inability of exercise 

to change food intake of obese female Zucker rats has also been reported 

in 8 and 25 week old rats (Becker-Zimmerman et al. 1982). 

Body composition and organ weights 

Lean rats responded normally to exercise with decreased percent 

carcass fat (Table 3). In contrast, the percent carcass fat of obese 

rats was unchanged by exercise. The obese Zucker rat defends its high 

body fat content despite food restriction (Bray et al. 1973) and 

jejunoileal bypass surgery (Greenwood et al. 1982). Furthermore, 

exercise had little effect on the obese body composition of obese male 

Zucker rats (Wardlaw 1984, Seelbach et al. 1985). Therefore, the 

inability of exercise to decrease the high body fat content of obese 

female Zucker rats is consistent with the resistant nature of the 

obesity. 

Lean female rats responded normally to exercise by increasing lean 

carcass weight (Table 3). However, exercise did not change the lean 
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TABLE 3. Body composition in exercised and sedentary female Zucker rats 

Genotype Treatment̂  Final 
Body Weight 

Carcass Lean Carcass Fat 

Lean Sed 

g 

243.5̂  

S 

173.5̂  

% 

14.3* 

Lean Exer 247.0̂  192.0® 5.9%,C 

Obese Sed 419.0% 191.0% 45.7° 

Obese Exer 398.0% 184.5% 44.5° 

L.S.D.̂  16.9 12.9 2.9 

n̂=12 for all groups. 

b 
Least Significant Difference. 

A-D 
Different superscript within column indicates significant 

difference (p<0.01). 
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carcass weight of obese rats. The inability of exercise either to 

decrease carcass fat or increase lean carcass weight of obese rats 

supports the theory that their basic metabolic lesion is related to 

defective regulation of lean tissue growth. 

The lean carcass weight of all obese rats was greater than that of 

lean sedentary rats. This genotypic difference is consistent with other 

studies in which obese female Zucker rats had above-normal carcass 

protein content (Radcliffe and Webster 1979, Walberg et al. 1984). 

These results are similar to the characteristics of ovariectomized rats. 

Ovariectomized sedentary rats have greater lean body mass than that of 

intact sedentary rats (Dohm and Beecher 1981, Harris et al. 1984). 

Furthermore, both obese female Zucker rats (Table 3) and ovariectomized 

rats (Dohm and Beecher 1981) fail to increase lean body mass in response 

to exercise. This evidence supports the suggestion that obese female 

Zucker rats have subnormal estrogen status. 

Obese Zucker rats have been reported to have enlarged livers (Bray 

and York 1979, Cleary and Vasselli 1981). The increased liver weight is 

due not only to an increase in fat deposition but also to an increased 

protein content (Cleary and Vasselli 1981, Kaminski et al. 1984). The 

higher protein:DNA ratio in the liver of obese rats may be related to 

their increased lipogenic activity in the liver (Cleary and Vasselli 

1981). The ability of exercise to decrease liver weight of obese female 

rats (Table 4) may reflect a decrease in energy available for 

lipogenesis. However, in a study of 10 week old female Zucker rats, 
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TABLE 4. Organ weights of exercised and sedentary female 
Zucker rats 

Genotype Treatment̂  Heart Liver Spleen 

mg g mg 

Lean Sed 780.0̂  8.18̂  432.0̂  

Lean Exer 837.0̂  8.54̂  439.0̂  

Obese Sed 964.0® 14.42® 542.0® 

Obese Exer 962.0® 12.98® 516.0® 
b 

L.S.D. 61.4 1.08 67.3 

n̂=12 for all groups. 

L̂east Significant Difference. 

 ̂̂Different superscript indicates significant difference 
(p< 0.001). 
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exercise did not change the liver weight of obese rats although it did 

increase the liver weight of lean rats (Wardzala et al. 1982). The 

failure of exercise to decrease liver weight in 10 week old obese female 

rats is similar to the lack of effect of exercise on liver weights of 

male obese rats (Deb and Martin 1975). It is likely that 10 week old 

obese female rats have not yet reached sexual maturity (Bray and York 

1979). The different stage of sexual maturity of the rats studied by 

Wardzala may explain the different responses of obese Zucker rats to 

exercise. 

The increased heart weight of exercised male and female rats 

compared to sedentary rats has been well-documented (Dohm and Beecher 

1981, Schiable et al. 1981). The lean female Zucker rats of this study 

responded normally to exercise with a slight increase in heart weight 

(Table 4). In contrast, exercise did not increase heart weight of obese 

rats. Male Zucker rats, whether lean or obese, have been shown to 

respond to exercise by increasing heart weight relative to lean carcass 

weight; however, absolute heart weight did not increase (Wardlaw 1984). 

In another study, the heart weight of 10 week old obese female rats was 

also unaffected by exercise (Wardzala et al. 1982). The greater heart 

weight of both male and female obese rats compared to lean rats may 

suggest that the heart is already so stressed with maintenance of blood 

flow to a larger circulatory system that the added stress of exercise 

did not result in further hypertrophy of the heart. Alternatively, the 

metabolic defect of the obese Zucker rat may prevent heart hypertrophy 

from occurring. 
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TABLE 5. Organ weight to lean carcass weight ratio in exercised and 
sedentary female Zucker rats 

Genotype Treatment Heart Liver Spleen 

(mg/lOOg CL)̂  (g/lOCg CL)̂  (mg/lOOg CL)̂  

Lean Sed 452̂  4.72̂  251"̂  

Lean Exer 438̂  4.45̂  229̂  

Obese Sed 509® 7.61® 284® 

Obese Exer 522® 7.02® 276® 

L.S.D.-̂  30 0.42 28 

n̂=12 for all groups. 

Ĉarcass lean. 

L̂east Significant Difference. 

 ̂̂Different superscript indicates significant difference 
(p< 0.001). 
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Urinary 3-niethylhistidine 

This is the first report of urinary 3-MH excretion of female Zucker 

rats (Table 6). Other investigators have reported that male lean and 

obese Zucker rats excrete similar amounts of 3-MH (Dunn and Hartsook 

1980, Houtz and Hartsook 1982). However, when these data are expressed 

as ii-moles 3-MH/lOOg lean body weight, the obese male rat excretes more 

3-MH than its lean counterpart does because of the subnormal lean body 

weight of male obese Zucker rats. In this study, even though obese 

female Zucker rats maintained lean carcass weight similar to that of 

lean rats, urinary excretion of 3-MH was higher in the obese rats. 

Increased excretion of 3-MH and urea by male rats and humans after 

a bout of exercise to exhaustion has been reported (Dohm et al. 1982a). 

Endurance training in humans results in decreased 3-MH concentrations in 

muscle, plasma and urine, suggesting a decrease in myofibrillar protein 

breakdown, although whole body protein breakdown increases (Radha and 

Bessman 1983, Rennie et al. 1981). Endurance trained male rats increase 

3-MH excretion (Kasparek et al. 1980) as well as whole body protein 

breakdown (Tapscott et al. 1982). In contrast, exercise did not 

increase nitrogen excretion or whole body protein degradation in female 

rats (Tapscott et al. 1982). 

This study indicates that lean female rats decrease 3-MH excretion 

and presumably decrease myofibrillar protein breakdown in response to 

endurance training. In contrast, the excretion of 3-MH in obese female 
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TABLE 6. Urinary excretion of 3-MH of exercised and sedentary female 
Zucker rats 

Genotype Treatment n 3-MH 

Lean Sed 7 

(nM/lGOe CL)̂  

902̂  

Lean Exer 5 796* 

Obese Sed 7 1022̂  

Obese Exer 5 1073̂  

L.S.D.̂  64 

Ĉarcass lean. 

L̂east Significant Difference. 

 ̂̂Different superscript indicates significant difference (p <0.001). 
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rats is unaffected by exercise. In lean female rats, the ability of 

exercise to increase lean body weight may be related to its ability to 

decrease 3-MH excretion. The inability of exercise to increase lean 

carcass weights and heart weights of obese female Zucker rats appears to 

support the concept that the metabolic defect of obese Zucker rats is 

related to abnormal regulation of lean tissue growth. However, the 

ability of the obese female Zucker rat to maintain above-normal lean 

carcass weight despite elevated 3-MH excretion suggests elevated protein 

synthesis rates, which may be a consequence of subnormal estrogen 

status. 
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EXPERIMENT 2: EFFECTS OF ETHYNYL ESTRADIOL ON BODY COMPOSITION, GROWTH 

AND 3-METHYLHISTIDINE EXCRETION OF FEMALE ZUCKER RATS 

Introduction 

In normal adult female rats, removal of endogenous estrogen by 

ovariectomy results in hyperphagia and body fat gain (Kakolewski et al. 

1968, Tarttelin and Gorski 1973), both of which can be reversed by 

estrogen administration (Landau and Zucker 1976, Hervey and Hervey 

1981). Ovariectomy of normal rats also increases lean body mass 

compared to that of intact female rats (Dohm and Beecher 1981, Harris et 

al. 1984). 

In general, estrogen administration to intact normal rats decreases 

body weight, carcass fat and lean carcass weight by decreasing food 

intake (Wade 1976, Wade and Gray 1979). However, estrogens can decrease 

lean carcass weight without reducing food intake (Wade 1976). Estrogen 

administration usually decreases overall protein synthesis (Robertson 

1967, Gaafar et al. 1973), although it may also induce the synthesis of 

specific proteins. 

Many of the characteristics of the obese female Zucker rat are 

similar to those of ovariectomized rats, thus suggesting subnormal 

estrogen status. These characteristics include hyperphagia, obesity and 

above-normal lean body mass (Radcliffe and Webster 1976, 1979). 

Furthermore, exercise did not increase lean carcass weight of obese 

female Zucker rats (see discussion. Experiment 1). This lack of 
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response to exercise is similar to that of exercised ovariectomized rats 

(Dohm and Beecher 1981). 

If subnormal estrogen status is a factor in the differences in body-

composition (especially lean carcass weight) between lean and obese 

female Zucker rats, then estrogen administration may normalize some of 

these differences. The purposes of this study are to determine; 1) the 

response to estrogen feeding in both genotypes, 2) the magnitude of any 

response with respect to increasing estrogen dosages and 3) the relative 

sensitivity of lean and obese female Zucker rats to estrogen feeding. 

Methods 

Female lean and obese Zucker rats were obtained from the animal 

breeding colony of the Food and Nutrition Department of Iowa State 

University at 8 weeks of age. Rats were caged individually under the 

same conditions described in Experiment 1. At ten weeks of age, rats 

were assigned to the following groups; 

Group 1 - Lean, control diet 

Group 2 - Lean, control diet plus 50 ug ethynyl estradiol (EE)/kg diet 

Group 3 - Lean, control diet plus 100 ug EE/kg diet 

Group 4 - Lean, control diet plus 200 ug EE/kg diet 

Group 5 - Obese, control diet 

Group 6 - Obese, control diet plus 50 ug EE/kg diet 

Group 7 - Obese, control diet plus 100 ug EE/kg diet 

Group 8 - Obese, control diet plus 200 ug EE/kg diet 
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The composition of the control diet is given in Table 1. Ethynyl 

estradiol was added to the control diet by first mixing it with sucrose 

(1:1000), then the sucrose-ethynyl estradiol mixture was added to the 

diet, and mixed thoroughly with the dry ingredients. Approximately 1 

liter of tap water per Kg of dry diet was added and mixed to a 

consistent slurry. The mixture was quickly transferred to waxed paper 

lined trays, allowed to solidify, scored into squares and dried in a 

forced-air drying oven at 50 C for 48 hours. 

After one week of the experiment, food intake was measured to 

confirm that EE feeding had not significantly altered food intake, 

thereby altering the EE dosage received. Rats were weighed three times 

weekly on an Ohaus balance model 700. During the last two days of the 

experiment, rats were housed in individual metabolism cages and 24 hour 

urine samples were collected. After the collection period, the 

metabolism funnels and screens were washed down with distilled water. 

The urine was filtered, measured and stored in tightly capped sample 

bottles at 0 C. All rats were killed on the day the urine collection 

ended. Carcass analyses were performed as described in Experiment 1. 

Urinary 3-MH was determined using High Pressure Liquid 

Chromatography by the method of Wassner et al. (1980) with the following 

equipment: Beckman model llOA HPLC, LDC/Milton Roy fluoroMonitor III 

filter fluorescence detector (254 nm excitation, 418-700 nm emission); 

Altex Ultrasphere ODS column, 4.6 x 25mm, 5u particle size; DuPont 

permaphase ODS guard column. Adaptation of this method to rat urine 
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samples required that the urine was first hydrolyzed in 6N HCl at 120 C. 

for 3 hours to free the acetylated form of 3-MH present in rat urine, 

then neutralized with 3N NaOH. The sodium borate buffer was prepared to 

a pH of 9.5 rather than 11.5 as used by Wassner et al. (1980). After 

fluoréscamine derivatives were prepared, samples were not neutralized 

before injection onto the HPLC column. A gradient of 25% to 40% 

Acetonitrile-Sodium Phosphate Buffer at 1.5 ml/min starting 5 minutes 

after injection for 15 minutes was used as the mobile phase. 

Results 

Body weight and weight gain 

Ethynyl estradiol (EE) feeding significantly (p<0.001) decreased 

the final body weights of both lean and obese female Zucker rats 

compared to that of non-EE-fed counterparts (Figure 3). Although final 

body weight declined linearly with increasing EE dosage in both 

genotypes, the magnitude of this decline was greater in obese rats than 

lean ones. 

Both lean and obese female Zucker rats decreased weight gain in 

response to EE feeding when compared to non-EE fed counterparts (Table 

7). However, EE-fed obese female Zucker rats decreased weight gain at 

an earlier age and at lower EE levels than lean rats did. 

Body composition and organ weights 

Lean rats responded to EE feeding by significantly (p<0.05) 

decreasing percent carcass fat to 60% of that of non-EE-fed lean rats 
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(Figure 5). However, the percent carcass fat of EE-fed and non-EE-fed 

obese female Zucker rats were nearly identical (Figure 5). 

Lean carcass weight of non-EE-fed obese rats was significantly 

(p<0.0005) greater that that of non-EE-fed lean rats (Figure 4). 

Estrogen feeding reduced significantly (p<0.0001) lean carcass weight in 

both lean and obese rats. However, EE feeding affected lean carcass 

weight more markedly in obese female Zucker rats. In lean rats 

receiving the highest EE dosage, lean carcass weight decreased to 90% of 

that of non-EE-fed counterparts. However, in obese rats receiving the 

highest EE dosage, lean carcass weight decreased to 80% of that of non-

EE-fed obese rats. 

Heart weight (Table 8) and heart weight relative to lean carcass 

weight (Figure 6) decreased linearly with increasing EE dosage in both 

lean and obese female Zucker rats. Liver weight (Table 8) and liver 

weight relative to lean carcass weight (Figure 7) decreased with EE 

feeding in both lean and obese rats and this decrease was of greater 

magnitude in obese rats. Estrogen fed lean rats decreased liver weight 

relative to lean carcass weight to 95% of that of non-EE-fed lean rats 

and EE-fed obese rats decreased liver weight relative to lean carcass 

weight to 65% of that of non-EE-fed obese rats. Estrogen feeding had no 

effect on spleen weight (Table 8) or spleen weight relative to lean 

carcass weight (Figure 8) of lean rats. In contrast, EE-fed obese rats 

significantly (p<0.0001) decreased spleen weight and spleen weight to 

lean carcass weight compared to that of non-EE-fed obese rats. 
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Urinary 3-methyIhistidine excretion 

Non-EE-fed obese female Zucker rats excreted significantly 

(p<0.001) greater amounts of 3-methyIhistidine (3-MH) than non-EE-fed 

lean rats did (Table 9). However, EE feeding did not alter urinary 3-MH 

excretion of either lean or obese rats. 

Discussion 

Body weight and weight gain 

In this study, estrogen feeding decreased weight gain (Table 7) and 

final body weight (Figure 3) of both lean and obese rats. These results 

are consistent with the known effects of estrogen administration in rats 

(Wade 1975, 1976). Estrogen inhibited weight gain at an earlier age and 

at a lower dose in obese rats than in lean rats. Estrogen also lowered 

final body weight of obese rats more than that of lean ones. These 

findings indicate a greater sensitivity of obese rats than of lean ones 

to estrogen, thus suggesting that obese female Zucker rats have 

subnormal estrogen status. 

It has been suggested that estrogen deficiency increases body 

weight by altering a metabolic "set point" through an unknown mechanism. 

This conclusion was drawn from a study in which high body weight 

ovariectomized rats were more sensitive to estrogen administration than 

their low body weight counterparts (Zucker and Antoniades 1972). This 

evidence may appear to explain the increased sensitivity to EE feeding 

of obese female Zucker rats. However, the high body weight rats in the 



www.manaraa.com

TABLE 7. Weight gain of EE-fed lean and obese female Zucker rats (n=9) 

Genotype Treatment Weekly Weight Gain (g) 
1 2 3 4 5 6 7 8 

Lean 0 

r4 
1 
 ̂

1 

24.5* 13.5* 8.2* 5.0* 6.5* 7.7* 4.8* 

50 19.8* 20.0*»® 13.6* 4.5® 2.3* 3.0* 6.7* 2.1* 

100 21.5* 14.3%'̂  8.8% 4.3® 2.8* 4.5* 6.4* 3.5* 

200 16.9* 11.5C 10.4*'® 3.4® 4.5* 0.7® 3.2® 4.2* 

Obese 0 46.8® 46.8̂  45.0̂  30.3̂  24.0® 21.9C 15.7C 15.3® 

50 36.3̂  43.2D,E 35.3° 22.2° 20.8̂  18.2̂  13.OC,D 12.7° 

100 35.9̂  38.7% 29.4% 19.0°'G 21.4̂  14.9° 12.7° 13.3® 

200 25.7° 28.2̂  26.1% 16.1% 16.7° 16.1̂ '° 12.2° 13.4® 

L.S.D.G 5.1 6.0 4.7 3.7 2.8 3.8 3.0 8.0 

L̂east Significant Difference. 

~̂̂ Different superscripts within column indicates significant difference (p<0,05). 
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experiment of Zucker (1972) were obtained by decreased litter size from 

birth to weaning. Rats treated in this manner achieve sexual maturity 

earlier than control rats do. In contrast, obese female Zucker rats 

reach sexual maturity later than lean rats do (Bray and York 1979). 

Furthermore, sensitivity to estrogen was more highly correlated with age 

than with body weight (Zucker and Antoniades 1972). This evidence 

suggests that factors other than high body weight may be responsible for 

the greater sensitivity to estrogen of obese female Zucker rats. 

In response to the "set point" theory. Wade and Gray (1979) suggest 

that increased body weight and food intake associated with estrogen 

deficiency are consequences, rather than causes, of metabolic shifts. 

It has been shown that estrogen deficiency (ovariectomy) increases 

adipose tissue lipoprotein lipase levels, which in turn increases body 

fat storage (Ferreri and Naito 1978). These characteristics of 

ovariectomized rats are similar to those of obese female Zucker rats 

(which may have subnormal estrogen status) (Gray and Greenwood 1984). 

It is unlikely that subnormal estrogen status is responsible for 

the shifts in lipid metabolism in the obese Zucker rat. The effects of 

ovariectomy in normal rats last only a few weeks, then food intake, body 

weight gain and lipoprotein lipase levels return to near normal 

(Tarttelin and Gorski 1973, Ferrari and Naito 1978). In contrast, food 

intake, body weight gain and lipoprotein lipase levels remain above-

normal throughout the life of obese Zucker rats (Bray and York 1979). 

Furthermore, estrogen administration prevents the effects of ovariectomy 
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TABLE 8. Organ weights of EE-fed lean and obese Zucker rats (n=9) 

Heart Liver Spleen 
Genotype Treatment Weight Weight Weight 

g g mg 

Lean 0 0.87* 7.1* 375.0* 

50 0.85* 6.5* 377.0* 

100 0.78® 6.3* 367.0* 

200 0.72^ 5.9* 350.0* 

Obese 0 1.27° 20.1® 663.0® 

50 1-08^ 12.6^ 476.0^ 

100 i.oof 11.9^ 437.oC 

200 0.91^ 10.4° 380.0° 

L.S.D.̂  0.06 1.58 41.51 

êast Significant Difference. 

A.-G 
Different superscripts within column indicates significant 

difference (p<0.05). 
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in normal rats (Wade and Gray 1979). In contrast, ovariectomy, with or 

without estrogen, or estrogen administration alone, have little effect 

on food intake, body fat content or lipoprotein lipase levels in obese 

female Zucker rats (Gale and Vanltallie 1979, Gray and Greenwood 1984). 

However, the lack of effect of estrogen status on food intake and body 

fat regulation in the obese female Zucker rat does not rule out the 

possibility of an estrogen effect on protein metabolism in these rats. 

Body composition and organ weights 

Lean rats responded normally to EE feeding by decreasing total 

carcass fat compared to non-EE-fed controls. However, although EE-fed 

obese rats had reduced total carcass fat, the percent carcass fat 

(Figure 5) and, therefore, the degree of obesity, remained similar to 

that of non-EE-fed obese rats. The failure of estrogen to normalize the 

body composition of the obese rats is consistent with the results of 

other studies which showed that these rats remained obese despite a 

variety of treatments. These include food restriction (Bray et al. 

1973, Cleary et al. 1980), treatment with a fatty acid synthesis 

inhibitor (Greenwood et al. 1981), and jejunoileal bypass surgery 

(Greenwood et al. 1982) as well as exercise (see discussion. Experiment 

1 ) .  

Estrogen administration reduced lean carcass weight in both lean 

and obese rats (Figure 4). This is consistent with the effects of 

estrogen in other rat strains. It does not appear to be the same as the 
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Ethynyl Estradiol in Diet (/ig EE/kg diet) 

FIGURE 3. Final body weight of EE-fed lean and obese female Zucker 
rats (Least Significant Difference = 22.64. A-E, differ­
ent superscript indicates significant differences, p<0.001) 
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FIGURE 4. Lean carcass weight of EE-fed female Zucker rats (Least 
Significant Difference = 10.06. A-D, different superscript 
indicates significant difference, p< 0.001) 
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FIGURE 5. Percent carcass fat of EE-fed female Zucker rats (Least 
Significant Difference = 1.81. A-C, different superscript 
indicates significant difference, p<0.001) 
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Ratio 
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Ethynyl Estradiol in Diet Qlg EE/kg diet) 

FIGURE 6. Heart weight to lean carcass weight ratio of EE-fed female 

Zucker rats (Least Significant Difference - 0.01. A-F, 
different superscript indicates significant difference, 
p < 0.001) 
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FIGURE 7. Liver weight to lean carcass weight ratio of EE-fed female 
Zucker rats (Least Significant Difference = 0.21. A-D, 
different superscript indicates significant difference, 
p< 0.0001) 
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FIGURE 8. Spleen weight to lean carcass weight ratio of EE-fed female 
Zucker rats (Least Significant Difference = 0.22. A-E, 
different superscript indicates significant difference, 
p <0.001) 
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TABLE 9• Urinary 3-MH excretion of EE-fed lean and obese female 
Zucker rats 

Genotype EE Level Urinary 3-ME nM/100 g Carcass Lean 

Lean 0 

200 

781 

812̂  

Obese 0 

200 

1102 

1150̂  

B 

L.S.D. 93 

êast Significant Difference. 

A—B 
Different superscript indicates significant difference 

(pc 0-001). 
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effect of simple food restriction. Although pair feeding of obese 

female Zucker rats somewhat reduced weight gain and carcass fat content, 

the fat-free carcass weight of the pair-fed rats remained similar to 

that of ad libitum fed obese rats (Bray et al. 1973). Only when weight 

gain was abolished by further reducing food intake (to two-thirds that 

of lean rats) was fat-free carcass weight reduced (to 75% of that of ad 

libitum fed obese rats). In contrast, pair-feeding of obese male Zucker 

rats to lean controls resulted in a significant reduction of lean 

carcass weight compared to that of ad libitum fed obese male rats (Milam 

et al. 1982, Zucker 1967). Therefore, it appears that the obese female 

Zucker rat is better able to defend lean body weight than is the obese 

male Zucker rat. 

The more marked effect of EE feeding on lean carcass weight of 

obese rats than on that of lean rats has not been previously reported. 

These data, like the previously-discussed results on weight gains, 

support the suggestion that obese female rats have subnormal estrogen 

status. Estrogen deficiency (ovariectomy) increased lean carcass weight 

of female rats (Dohm and Beecher 1981, Harris et al. 1984). Thus, 

subnormal estrogen status may be a contributing factor in the elevated 

lean carcass weight of obese female rats. 

Liver weights of EE-fed rats were lower than those of non-EE-fed 

rats, regardless of genotype (Figure 7). However, spleen weights of EE-

fed rats were lower than those of non-EE-fed rats in obese rats only 
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(Figure 8). In obese rats, especially, decreased organ weight may 

merely reflect decreased fat content of the organs. However, the 

reduction of liver weight of both genotypes was approximately the same 

at all EE levels. In contrast, the decrease in spleen weight of obese 

rats is linear with increasing EE dosage. It is unlikely that fat 

content of organs would respond differently in this manner. 

Fat storage in the liver is much more extensive than fat storage in 

the spleen. Therefore, the potential for decreased fat content is 

greater in liver than in spleen. However, EE feeding decreased weight 

of the spleen more markedly than of the liver. Gross visual inspection 

of spleens from obese rats revealed no visible fat deposition, although 

such deposition was routinely noted in hearts and livers of obese rats. 

Furthermore, the total lipid content of livers from adult lean and obese 

female Zucker rats has been reported as 40 and 59 mg/g liver, 

respectively (Kaminski et al. 1984). This difference is hardly 

sufficient to account for the difference in liver weight between 

genotypes or EE levels. This suggests that protein content, as well as 

fat content of organs is reduced with EE feeding. 

In contrast to the effects of estrogen on liver and spleen, EE 

feeding decreased heart weight relative to lean carcass weight to a 

similar degree in both genotypes (Figure 6). This decrease was linear 

with increasing EE dosage in both genotypes. Thus, estrogen effects 

varied from organ to organ as well as differing in the two genotypes. 
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Food restriction of obese female Zucker rats did not significantly 

decrease the weights of liver, kidney or thyroid gland compared to those 

of ad libitum fed obese rats (Bray et al. 1973). Therefore, it appears 

that the estrogen effects in this study cannot be explained by decreased 

food intake alone. 

In contrast to food restricted obese female rats, food restricted 

obese male Zucker rats decreased the weights and protein contents of 

liver and kidney (Cleary and Vasselli, 1981). As discussed previously 

in this section, obese female Zucker rats are better able to defend lean 

carcass weight under conditions of food restriction than are their male 

counterparts. Apparently, this ability extends to the organs as well. 

Amounts of nutrients available to the cells can be decreased by 

means other than food restriction. For example, severely limiting 

nutrient absorption is one of the primary results of jejunoileal bypass 

surgery. Jejunoileal bypass surgery of obese female Zucker rats 

decreased carcass protein content as well as weights and protein 

contents of liver, heart, kidney and muscle compared to that of sham 

operated counterparts (Greenwood et al. 1982). These results, which are 

similar to the estrogen effects in the present study, might appear to 

suggest that food intake restriction could explain the estrogen effects. 

However, Greenwood et al. (1982) discuss evidence that bypass surgery 

can produce symptoms of protein malnutrition as well as symptoms of food 

restriction. This evidence suggests that estrogen treatment may 

decrease organ weights and lean carcass weight by altering protein 

metabolism independenly of food intake restriction. 



www.manaraa.com

69 

Urinary 3-methyIhistidine 

The urinary excretion of 3-methylhistidine (3-MH) is widely used as 

an indicator of muscle protein breakdown (Ward and Buttery 1980, Young 

and Munro 1978). Obese non-EE-fed rats excreted more 3-MH than their 

lean counterparts did (Table 9). This finding is consistent with the 

results of Experiment 1 as well as with the results of other studies of 

Zucker rats (see discussion. Experiment 1). However, EE feeding had no 

effect on 3-MH excretion in either genotype. This suggests that the 

ability of estrogen to decrease lean carcass weight is not accomplished 

through increasing muscle protein degradation. 

In simmary, the decreased body weight and weight gain of EE-fed 

lean and obese rats compared to that of non-EE-fed counterparts are 

similar to the effects of food restriction. Furthermore, the ability of 

estrogen to decrease lean carcass weight and organ weights, especially 

in obese rats, suggests an additional estrogen effect on protein 

metabolism. The failure of estrogen to change urinary 3-MH excretion in 

either genotype suggests that the ability of estrogen to decrease lean 

carcass weight is not accomplished through increasing muscle protein 

degradation. The greater sensitivity of obese rats to estrogen feeding 

implies that subnormal estrogen status may be a contributing factor to 

the elevated lean carcass weight of the obese female rat. 

As discussed previously, estrogen administration decreases overall 

protein synthesis. Therefore, the ability of estrogen to decrease lean 

carcass weight may be accomplished through decreasing protein synthesis. 
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In contrast, subnormal estrogen status may increase lean carcass weight 

through removing an inhibition on protein synthesis. In rats 

maintaining lean carcass weight, an increase in protein synthesis could 

reasonably be followed by an increase in protein degradation and, 

presumably, urinary 3-MH excretion. 
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EXPERIMENT 3: DEVELOPMENT AND PROTEIN METABOLISM OF FEMALE ZUCKER RATS 

Introduction 

The genetically obese Zucker rat is widely used as a model for 

juvenile onset obesity (Bray and York 1979). However, the metabolic 

defect causing the obesity is as yet unknown. Subnormal protein 

synthesis, which results in increased shunting of nutrients into fat 

synthesis, has been suggested as an underlying factor in the development 

of obesity in the Zucker rat. The obese male Zucker rat deposits less 

body protein than the lean male rat (Pullar and Webster 1974, Dunn and 

Hartsook 1980). Obese weanling male rats synthesized less muscle 

protein at 18 and 27 days of age (Reeds et al. 1982). Also, there was 

no difference in the calculated rate of protein degradation between the 

genotypes. The authors suggested that this early difference in protein 

synthesis rate could increase energy available for fat storage in obese 

rats and, therefore, may in part explain their obesity. 

There is conflicting evidence of subnormal protein synthesis in 

adult male obese Zucker rat. Adult male obese rats injected with '̂'C-

labeled amino acids deposited a smaller percentage of the total dose as 

lean tissue than the lean rats did (Dunn and Hartsook 1980). However, 

in this study, the labelled amino acid dose was based on body weight, 

not on estimated body protein content. Also, measurement of total 

tissue did not discriminate between free and protein-bound label. 

In contrast, as a result of measurements of carcass composition and 
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nitrogen retention, it is suggested that fractional rates of protein 

deposition are similar in both genotypes in both male and female Zucker 

rats (Pullar and Webster 1974, Radcliffe and Webster 1979). 

The suggestion that subnormal protein synthesis underlies the 

development of obesity is inconsistent with the characteristics of the 

female obese Zucker rat. The obese female Zucker rat attains normal or 

above-normal lean body mass (Radcliffe and Webster 1976, 1978, see 

discussion Experiment 2). This evidence suggests that either female 

obese Zucker rats are not subject to an inhibition of protein synthesis 

or that they are able to compensate for subnormal protein synthesis, 

thereby maintaining normal lean body mass. 

Urinary 3-MH excretion is widely used as an indicator of muscle 

protein breakdown (Young and Munro 1978, Ward and Buttery 1980). Both 

male and female adult obese Zucker rats excrete above-normal amounts of 

3-MH (Dunn and Hartsook 1980, see results, Experiments 1 and 2). 

However, the genotypic difference in 3-MH excretion is greater in female 

than in male Zucker rats. This evidence suggests that changes in rates 

of muscle protein degradation, as well as protein synthesis, may 

contribute to the characteristic differences in lean body mass of male 

and female obese Zucker rats. 

The purpose of this experiment was to determine if young obese 

female Zucker rats exhibit an early inhibition of protein synthesis 

similar to that of obese male Zucker rats and to determine the effects 

of obesity on 3-MH excretion in young female Zucker rats. 
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Methods 

All animals were obtained from the animal colony of the Food and 

Nutrition Department of Iowa State University. Female lean and obese 

weanling rats were selected by appearance, at 21 days of age and fed a 

3-MH-free diet (Table 1) for 3 days. During the post-weaning period, 

rats were housed individually in metabolism cages under the conditions 

described in experiment 1. A second group of female lean and obese rats 

were maintained within the colony on standard pelleted rat ration 

(Teklab) until 10 weeks of age. All rats were then housed in metabolism 

cages under the conditions described above and fed a 3-MH-free diet for 

three days. 

A 24 hour urine sample was collected on all rats, with the 

collection period ending on the day rats were killed. Metabolism 

funnels and screens were washed with distilled water and urine was 

filtered, measured and placed in a tightly capped vial and stored at 0 

C. All rats were weighed on an Ohaus balance model 700. Carcass 

composition was determined as described in Experiment 1. 

Determination of Radioactivity in Tissues. Using a modification of 

the technique reported by Garlick et al (1980), rats were intravenouly 

injected, via the tail vein, with L-[4-̂ H]phenylalanine solution (1.0 

ml/ lOOg body weight). For this solution, L-[4-̂ H]phenylalanine 

(Amersham) was combined with a 150mM unlabled phenylalanine (Sigma) 

aqueous solution to give 50 uCi/ml. 
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In the experiment using 10 week old female rats, the dose given to 

the obese animals was adjusted because of the large difference in body 

weight and body fat when obese animals are compared to lean animals of 

the same age. Prior to the experiment, several lean and obese 10 week 

old female rats were decapitated and percent carcass fat was determined 

to be approximately 10% and 40% respectively. The formula used for dose 

correction was as follows: body weight - (body weight x 0.3) / 100 = 

amount injected (ml). 

After injection, the rats were allowed to metabolize the dose for a 

known amount of time, then decapitated. Liver and hind limb muscle 

samples were quickly removed, weighed and frozen in liquid nitrogen. 

Each tissue sample was homogenized with a glass on glass tissue 

homogenizer in 10% trichloroacetic acid (Fisher) to make a 20% 

homogenate. The homogenate was washed three times in 10% TCA and three 

times in 95% ethanol. The remaining protein precipitate was lyophilized 

using a Virtis Unitrap II freeze drier and weighed on a Mettler H6T 

balance. The protein precipitate was transferred to a glass 

scintillation vial and 1.0 ml of NCS tissue solubilizer (Amersham) was 

added. The vials were incubated at 50 degrees C. for 48 hours to digest 

the protein. Samples were counted in a Beckman Scintillation Counter 

using a scintillation solution consisting of 10 ml toluene containing 

0.006 percent 2,5-diphenyloxazole and 0.0075 percent p-

bis-2'(5'-phenyloxozolyl)benzene (Amersham) plus 5 ml ethanol. 

Correction for efficiency was made using external standard mode. 
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Determination of Urinary 3-Methylhistidine. Urinary 3-MH was 

determined as described in Experiment 2. 

Results 

Body weight and body composition 

At 25 days of age, lean and obese female Zucker rats were similar 

in body weight, carcass weight and lean carcass weight (Figure 9). 

Percent carcass fat of obese rats was significantly elevated. 

At 10 weeks of age, obese female Zucker rats had significantly 

higher body weight and carcass weight than lean ones (Figure 10), 

although lean carcass weight was still similar in both genotypes. 

Percent carcass fat of obese female rats was significantly above normal, 

comprising nearly half of carcass weight. 

Incorporation of ̂ H-phenylalanine 

In both lean and obese weanling (25 days old) rats, incorporation 

of 'H-phenylalanine into liver protein was approximately 6 times as 

rapid as for muscle. Lean weanling rats incorporated significantly more 

Ĥ-phenylalanine into muscle protein than obese weanling rats did 

(Figure 11); the rate of ̂ H-phenylalanine incorporation into muscle of 

obese rats was only 70% of that of lean rats (p<0.05). Lean weanling 

rats also incorporated significantly more ̂ H-phenylalanine into liver 

protein than did the obese ones (Figure 12); the rate of 

phenylalanine incorporation into liver protein of obese rats was only 

78% of that of lean rats (p<0.05). 
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In adult (10 week old) rats, as in weanling rats, incorporation of 

Ĥ-phenylalanine into liver protein was approximately 7 times as rapid 

as for muscle protein in both lean and obese rats. Lean and obese rats 

incorporated similar amounts of Ĥ-phenylalanine into proteins of both 

muscle (Figure 13) and liver (Figure 14). 

Urinary 3-methyIhistidine 

Obese weanling rats excreted approximately 70% as much 

3-methyIhistidine (3-MH) as lean rats did (Table 10). The change in 

3-MH excretion between 25 days and 10 weeks of age was significantly 

(p<0.05) greater in the lean than obese rats, suggesting that the obese 

rats had an abnormally low rate of muscle protein catabolism which was 

normalized by 10 weeks of age. 

At 10 weeks of age, lean and obese female Zucker rats excreted 

almost identical amounts of 3-MH (Table 10). Ten week old lean and 

obese rats excreted approximately half the 3-MH that their weanling 

counterparts did. 

Discussion 

Body composition 

The obese weanling female rats of this experiment deposited above-

normal carcass fat (Figure 9). This is consistent with the findings 

that obese male Zucker rats deposit above-normal body fat by 16 days of 

age (Bell and Stem 1977). Lean carcass weight was similar in both lean 

and obese female Zucker rats (Figure 9). In contrast, obese male Zucker 



www.manaraa.com

Lean 

Obese 
60-

50-

40-

30-

20-

10-

Body Weight (g) 
% Carcass Fat 
p < 0.0001 

Carcass Lean (g) 
N.S. 

Carcass Weiglit (g) 

FIGURE 9. Body composition of 25-day-old female Zucker rats Zucker female 



www.manaraa.com

350 -• Lean 

Obese 

200 -

50 __ 

10 --

% Carcass Fat 
p < 0.0001 

Carcass Weight (g) Carcass Lean (g) 
p< 0.0001 N.S. 

Body Weight (g) 
p <0.0001 

FIGURE 10. Body composition of 10-week-old female Zucker rats 



www.manaraa.com

900 

800. 

700 

600-

500-

400 

300 

200 

100 

0 

79 

Lean, slope = 30.3 DPM/min. 

Obese, slope = 17.00 DPM/min. 
p <.0.01 

1 1 1 1 
5 10 15 20 

Time After Injection (minutes) 

2 11. Uptake of H-phenylalanine into muscle protein of 25-
day-old female Zucker rats 



www.manaraa.com

80 

4000 

3000 .. 

c •H 
o 

°2000 
04 
CO 

s 

1000 -

Lean, slope = 291.3 DPM/min. 

Obese, slope = 185.7 DPM/min. 
p <0.01 

-f-

FIGURE 12. 

5 10 15 20 

Time After Injection (minutes) 

3 
Uptake of H-phenylalanine into liver protein of 25-day-old 
female Zucker rats 



www.manaraa.com

81 

700 _L 

600 

500 --

400 --

0) u 
O 
k Pu 
00 300 - -

en 
o 

O 
200-1-

100-• 

Lean 

Obese 

No significant 
difference 

1 1 1 i 
5 10 15 20 

Time After Injection (minutes) 

FIGURE 13. Uptake of H-phenylalanine into muscle protein of 10-week-
old female Zucker rats 



www.manaraa.com

82 

4000 - -

3000 --

= 2000 
<u u 
o 
Ph 

CO 
<n 
o 

° 1000 

Lean 

Obese 

No significant 
difference 

4-

10 15 20 

Time After Injection (minutes) 

25 

FIGURE 14. Uptake of H-phenylalanine into liver protein of 10-week-old 
female Zucker rats 



www.manaraa.com

83 

TABLE 10. Urinary 3-MH excretion of female Zucker rats 

Urinary 3-MH nM/g Carcass Lean 
Genotype 25 days of age 10 weeks of age A 

Lean 122 45 87̂  

Obese 87 50 37® 

b 
L.S.D. 37.8 14.9 26.2 

n̂=10 for all group. 

-Least Significant Difference. 

A B 
' Different superscripts within colum indicates significant 

difference (p<0.05). 
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rats had subnormal body protein content as early as 23 days of age 

(Reeds et al. 1982). Therefore, the established pattern of subnormal 

lean body mass of adult male obese rats and normal or above-normal lean 

body mass of adult female obese rats is also apparent at weaning. 

As expected, 10 week old obese female Zucker rats markedly 

increased carcass fat deposition compared to that of lean rats (Figure 

10). Lean carcass weights of 10 week old lean and obese female rats 

were similar (Figure 10). These results support earlier reports of 

normal or above-normal lean body mass in adult obese female Zucker rats 

(Radcliffe and Webster 1976, 1979). The results of this experiment 

might appear to conflict with the findings of above-normal lean carcass 

weight of 16 week old obese female Zucker rats and the proposed 

relationship to subnormal estrogen status (see discussion. Experiment 

2). However, at 10 weeks of age female rats have only recently achieved 

sexual maturity. The effects associated with subnormal estrogen status 

may be cumulative with age and therefore may not be apparent soon after 

sexual maturity. 

Incorporât ion of ̂ H-pheny1a1anine 

In obese weanling female Zucker rats, incorporation of 

phenylalanine into both muscle and liver proteins was approximately 70% 

of that of lean counterparts (Figures 10 and 11). Reeds et al. (1982) 

found a similar inhibition of muscle protein synthesis in obese weanling 

male Zucker rats. However, incorporation of ̂ H-phenylalinine into liver 
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protein was similar in both lean and obese weanling male Zucker rats. 

One reason for the lack of difference in the liver of male rats might be 

the use of intraperitoneal injection instead of the recommended 

procedure of intravenous injection (Garlick et al. 1980). 

Intraperitoneal injection of the labelled amino acid might delay-

attainment of equilibrium between blood and tissue, thus altering the 

linear decline of tissue label levels on which the accuracy of this 

method depends. Also, the possibility of adsorption of the label onto 

the liver surface, even after rinsing the sample, cannot be discounted. 

Despite differences in methodology, apparently obese female weanling 

Zucker rats exhibited an inhibition of protein synthesis similar to that 

of obese male weanling Zucker rats. 

At 10 weeks of age, lean and obese female Zucker rats incorporated 

similar amounts of Ĥ-phenylalanine into muscle proteins (Figure 13). 

These data are consistent with results of studies of adult male and 

female Zucker rats in which fractional rates of protein deposition were 

similar in both genotypes (Pullar and Webster 1974, Radcliffe and 

Webster 1976, 1979). In contrast, the gastrocnemius muscles of 8 week 

old obese female rats contained less protein (mg/g muscle) than that of 

lean counterparts (Lanza-Jacoby and Kaplan 1984). Although these 

results apparently conflict with my results, it should be emphasized 

that the protein synthesis rate reflects the immediate protein 

metabolism, whereas the protein content reflects the earlier protein 

metabolism of the muscle. Furthermore, the analysis of one muscle 
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cannot be presumed to accurately represent whole body muscle protein 

metabolism. 

The similar rates of ̂ H-phenylalanine incorporation into liver 

proteins in lean and obese female rats (Figure 14) are consistent with 

the findings of liver protein content in female Zucker rats. The livers 

of both male and female adult obese Zucker rats contain more total 

protein than that of their lean counterparts, primarily because of 

above-normal liver size (Kaminski et al. 1984, Chanussot et al. 1984). 

However, mg protein/g liver was decreased in obese male Zucker rats 

compared to lean rats (Chanussot et al. 1984). In contrast, mg 

protein/g liver was similar in lean and obese female Zucker rats 

(Kaminski et al. 1984). Therefore, compared to the obese male Zucker 

rat, the obese female rat has a greater ability to defend liver protein 

content as well as lean body mass. 

Urinary 3-methyIhistidine excretion 

Obese weanling female Zucker rats exhibited 3-MH excretion of 75% 

of that of lean rats (Table 10). In contrast, lean and obese weanling 

male Zucker rats have similar calculated rates of protein degradation 

(Reeds et al. 1982). This evidence suggests that unlike their male 

counterparts, obese weanling female Zucker rats decrease muscle protein 

degradation to adapt to lower rates of protein synthesis and thereby 

maintain normal body protein deposition. 

At 10 weeks of age, lean and obese female Zucker rats excreted 

similar amounts of 3-MH (Table 10). This is consistent with other 
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findings in this study in which lean carcass weights and 

phenylalanine incorporation rates were similar in both genotypes at 10 

weeks of age. Therefore, 10 week old obese female Zucker rats 

apparently adapt to normal protein synthesis rates with a slower 

decrease in muscle protein degradation with age. 

In summary, obese weanling female Zucker rats exhibit an inhibition 

of protein synthesis similar to that of obese male weanling Zucker rats. 

However, unlike the obese male rat, the obese female rat apparently 

maintains lean body mass by decreasing muscle protein degradation to a 

similar degree. This evidence supports the hypothesis that an early 

inhibition of protein synthesis may increase the energy available for 

fat storage. 

At 10 weeks of age, lean and obese female Zucker rats synthesize 

protein and excrete 3-MH at similar rates. The findings of studies on 

male Zucker rats suggest that lean and obese rats synthesize protein at 

similar rates at this age (Radcliffe and Webster 1979, Reeds et al. 

1982). However, 3-MH excretion of 10 week old male Zucker rats has not 

been reported. Reeds et al. (1982) suggest that after the early phase 

of protein synthesis inhibition, obese rats synthesize protein at the 

normal rate, but cannot further increase protein synthesis to achieve 

normal lean body mass. The inability of exercise to increase the lean 

carcass weight of obese female Zucker rats supports the concept that the 

ability of adult obese Zucker rats to synthesize protein is limited (see 

discussion. Experiment 1). Therefore, the results of this study support 
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the hypothesis that protein synthesis inhibition of weanling obese rats 

is followed by a period of normal protein synthesis in adult obese rats. 

Furthermore, the ability to decrease muscle protein breakdown allows the 

obese female Zucker rat to achieve normal lean body mass despite an 

early period of protein synthesis inhibition. 
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GENERAL DISCUSSION 

The suggestion that subnormal protein synthesis and adrenal gland 

malfunction are underlying causes of obesity in the Zucker rat appears 

to be consistent with the characteristics of the obese male Zucker rat, 

but not with those of the obese female rat. The characteristics of the 

obese female Zucker rat which are not consistent with this explanation 

have been commonly overlooked in the literature. The major question is, 

if decreased protein synthesis and subnormal lean body mass are 

underlying factors in the obesity, then how does the female Zucker rat 

maintain normal or above-normal lean body mass in the presence of 

obesity? The experimental results of this dissertation provide some 

explanations for this inconsistency. 

The failure of exercise to increase lean carcass weight or alter 

3-MH excreton in obese female Zucker rats suggests defective regulation 

of protein metabolism (see discussion, Experiment 1). Furthermore, the 

response of obese female Zucker rats to exercise was similar to that of 

exercised ovariectomized rats, thus suggesting subnormal estrogen 

status. 

The results of Experiment 2 show that subnormal estrogen status may 

be responsible for the above-normal lean body mass of obese female 

Zucker rats. Also, the ability of EE feeding to decrease the lean 

carcass weight in female Zucker rats is not directly mediated through a 

decrease in muscle protein catabolism. 
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The results of experiment 3 suggest that obese weanling female 

Zucker rats experience the same inhibition of protein synthesis that has 

been demonstrated in obese weanling male rats (Reeds et al. 1982). 

However, unlike the male rat, the obese weanling female Zucker rat 

decreased muscle protein breakdown, thereby maintaining normal lean body 

mass. At 10 weeks of age, obese female rats have normal rates of 

protein synthesis and 3-MH excretion as well as normal lean body mass 

(see discussion. Experiment 3). Although the mechanism is unknown, the 

ability of obese female rats to alter muscle protein breakdown appears 

to be related to the maintenance of lean body mass. 

In contrast to younger rats, 16 week old female Zucker rats have 

above-normal lean carcass weight despite elevated 3-MH excretion, and 

presumably elevated muscle protein degradation (see discussion. 

Experiments 1 and 2). The above-normal 3-MH excretion of obese female 

rats is consistent with the increased muscle protein degradation found 

in corticosterone treated normal rats (Millward et al. 1983, Tomas et 

al. 1984b). However, if both muscle protein breakdown and lean carcass 

weight are above-normal, then apparently muscle protein synthesis is 

also elevated in the obese female Zucker rat. This implied elevated 

protein synthesis rate is inconsistent with the ability of high plasma 

corticosterone levels to depress protein synthesis in normal rats 

(Millward 1975). 

The subnormal estrogen status of the obese female Zucker rat may be 

a factor in achieving above-normal lean body mass, despite high plasma 
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corticosterone levels. Although estrogen feeding decreased lean carcass 

weight in both genotypes, estrogen feeding had no effect on 3-MH 

excretion in either lean or obese female Zucker rats (see discussion, 

Experiment 2). These results suggest that the above-normal lean carcass 

weight of obese female rats is not a consequence of decreased muscle 

protein degradation. An alternative explanation is that the above 

normal lean body mass of obese female rats is achieved through increased 

protein synthesis. However, this explanation is also inconsistent with 

the effect of corticosterone on protein synthesis. Therefore, 

apparently an antagonistic relationship exists between the effects of 

subnormal estrogen status and high corticosterone levels. 

A relationship between subnormal estrogen status and adrenal gland 

function has been demonstrated. Ovariectomized normal rats increase 

body weight and food intake. However, the weight gain after castration 

can be prevented by adrenalectomy (Mook et al. 1972). This effect was 

postulated to be caused by removal of progesterone which is primarily 

secreted by the adrenals in the rat. It has been established that 

estrogen and progesterone have opposite effects on weight gain and food 

intake in the rat (Wade and Gray 1979). Although the mechanism of 

action is unknown, it is suggested that the effects of ovariectomy are a 

consequence of an abnormal estrogen/progesterone ratio. Adrenalectomy 

of ovariectomized rats apparently corrects this ratio. 

Lean female Zucker rats responded normally to ovariectomy and 

adrenalectomy (Yukimura and Bray 1978). However, ovariectomy of obese 
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female Zucker rats did not result in increased body weight gain, 

suggesting that subnormal estrogen status was already present. 

Furthermore, adrenalectomy of ovariectomized obese female rats markedly 

reduced food intake and weight gain to below the levels of intact obese 

female rats. Therefore, the response to ovariectomy and adrenalectomy 

is different in lean and obese rats. Removal of corticosterone, as well 

as progesterone, is probably responsible for the more marked effects of 

adrenalectomy in obese female Zucker rats. 

Although lean body mass was not reported in the previously 

discussed studies, above-normal lean body mass is a consequence of 

ovariectomy in normal rats (Dohm and Beecher 1981, Harris et al. 1984, 

Shaw et al. 1983). Therefore, altered estrogen/progesterone ratios may 

be a factor in the above-normal lean body mass of obese female Zucker 

rats. As discussed previously, the above-normal lean body mass and 3-MH 

excretion of obese female rats suggests elevated rates of protein 

synthesis. Perhaps an altered estrogen/progesterone ratio could 

overcome the effects of high corticosterone levels in the obese female 

rat, thus increasing both protein synthesis and degradation. 

The cause of subnormal estrogen status in the obese Zucker rat is 

unknown (Gray and Greenwood 1984). However, the symptoms of subnormal 

estrogen status develop even when food intake and weight gain are 

restricted (see review of literature). Furthermore, it has been 

suggested that the underlying metabolic defect of the Zucker rat may 

also be responsible for subnormal estrogen status (Gray and Greenwood 

1984). 
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Adrenal gland malfunction as the cause of obesity could be 

consistent with the development of subnormal estrogen status. As 

previously discussed, high plasma corticosterone levels decrease protein 

synthesis in normal rats and may also decrease the synthesis of insulin 

receptors in the Zucker rat (Czech et al. 1978). Subnormal estrogen 

status in obese female Zucker rats could be explained by decreased 

number or function of estrogen receptors, which may be caused by 

elevated corticosterone levels. 

As an alternative to corticosterone and estrogen having a cause and 

effect relationship, elevated corticosterone levels and subnormal 

estrogen status may both be independent symptoms of the underlying 

genetic defect in the Zucker rat. As discussed previously, elevated 

corticosterone levels results in high body fat in forms of obesity other 

than that of the Zucker rat (Sclafani 1984). Also, adrenalectomy can 

prevent obesity even if adrenal gland malfunction is not the priamry 

cause of obesity, as is the case in VMH lesioned rats (Bruce et al. 

1982). It may be that elevated corticosterone levels are another 

symptom, rather than the cause, of obesity in the Zucker rat. This 

suggestion is supported by the finding that hypophysectomy also corrects 

many symptoms of obesity in the Zucker rat (Powley and Morton 1976). It 

is possible that a receptor mechanism in the hypothalamus is defective, 

thereby causing widely diversified alterations in metabolism through 

hormonal changes (Shaw et al. 1983, Bray and Fisler 1985). These 

changes could include elevated corticosterone levels (via defective ACTH 
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secretion) as well as subnormal estrogen status (via defective 

gonadatropin secretion). Therefore, a defective receptor mechanism 

in the hypothalamus could explain both high corticosterone levels 

and subnormal estrogen status. 

In conclusion, the ability of the obese female Zucker rat to 

maintain normal lean body mass is apparently related to the ability 

of the rat to decrease 3-MH excretion early in life (Figure 15). 

After sexual maturity, the above-normal lean body mass of the obese 

female Zucker rat is apparently a consequence of subnormal estrogen 

status, which may result in increased protein synthesis. Furthermore, 

the characteristics of the obese female Zucker rat are consistent 

with the hypothesis that defective regulation of metabolism is an 

underlying factor in the obesity of the Zucker rat. 
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